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SUMMARY

We report a new development in the area of non-oscillatory transport methods. We derive, discuss,
and test the iterative upwind scheme MPDATA in the Finite Volume framework with the edge-based
data structure and arbitrary hybrid mesh. MPDATA has proven successful in simulations of geophysical
�ows using single block, structured cuboidal meshes, while employing continuous invertible mappings
to accommodate time-dependent curvilinear domains. Our motivation for the �nite-volume formulation
and the choice of unstructured meshes is to facilitate the use of MPDATA schemes for a wider range
of applications involving complex geometries and=or inhomogeneous anisotropic �ows, where mesh
adaptivity is advantageous. Our development preserves the signature bene�ts of the standard Cartesian-
mesh MPDATA scheme, i.e. the second-order accuracy, sign-preservation, and a full multidimensionality
free of directional-splitting errors. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since its origin in the early eighties [1, 2], MPDATA has evolved from a simple sign-
preserving advection scheme to a general, nonoscillatory approach for �nite-di�erence in-
tegration of the conservation laws of geophysical �uids on micro-to-planetary scales; cf.
Reference [3]. A comprehensive review of MPDATA, including both the underlying con-
cepts and the details of implementation, can be found in Reference [4].
Recently, MPDATA has attracted attention in the context of the monotonically integrated

large eddy simulations (MILES), as a high Reynolds number �uid solver with implicit
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turbulence modelling capability [5–7]. By design, MPDATA relies on iterative application of
the upwind scheme, where subsequent iterations compensate for the implicit viscosity of the
preceding steps. Thus, it bears an analogy to generalized similarity models, where an estimate
of the full un�ltered Navier–Stokes velocity (that enters the subgrid-scale stress tensor) is
obtained by an approximate inversion of the �ltering operation, i.e. deconvolution [8].
Motivated by the strengths of �nite-di�erence MPDATA,‡ here we propose a new formu-

lation, in the arbitrary �nite-volume framework and hybrid mesh. In MPDATA, as in any
Taylor-series based integration method for di�erential equations, a choice of data structure
has a pronounced impact on technical details of the algorithm. Since our aim is a broad
range of applications in two and three spatial dimensions with large number of computational
cells, we select a general, compact, and computationally e�cient edge-based data structure.
This contrasts with the approach adopted in Reference [9], where the focus on meteorolog-
ical applications dictated an unstructured-mesh discretization merely in the horizontal, with
the cell-centred and face-centred control-volume staggering of scalar and vector dependent
variables, respectively; cf. Reference [10], for a discussion of computational implications of
various data structures.
In the following section we show a brief derivation of the �nite-volume MPDATA and

comment only on key aspects of the implementation. Section 3 concludes the paper with a
summary of the benchmark results. The reader interested in engineering the implementation
of the theory outlined and compressible �ow applications is referred to Reference [11].

2. FINITE-VOLUME MPDATA: BASIC SCHEME

Here, we are concerned with an elementary initial value problem, the advection equation

@�
@t

≡ −∇ · (v�) (1)

where �=�(x; t) is a nondi�usive scalar �eld assumed nonnegative at t=0, and the v= v(x)
is a prescribed �ow assumed stationary and solenoidal. The adopted assumptions merely sim-
plify the presentation; extensions to nonnegative scalar �elds and arbitrary �ows directly
follow the developments for �nite-di�erence MPDATA, cf. Reference [4]. Similarly, we shall
disregard the variability of an unstructured grid in time—an assumption easy to relax follow-
ing �nite-di�erence experience [3]. Integrating (1) over the volume of an arbitrary cell (while
employing the Gauss divergence theorem) results in

�n+1i =�ni − �t
Vi

l(i)∑
j=1
F⊥
j Sj (2)

Figure 1 shows a face of an arbitrary computational cell containing vertex i, together with
the edge connecting vertex i with one of its immediate neighbour j; there are l(i) edges
connecting the vertex i with its neighbours. Sj refers both to the face per se and its surface
area. Equation (2) is exact, given �n+1i and �ni are interpreted as the mean values of �

‡Although the Cartesian-mesh MPDATA is a particular �nite-volume scheme, in general, it derives from �nite
di�erencing of the �ux-form continuous PDE (1).
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Figure 1. Schematics of an edge piercing a face of an arbitrary 3D cell (left),
and of an edge-based median-dual mesh in 2D (right).

within the volume Vi of the cell containing vertex i, while F⊥
j is interpreted as the mean

normal �ux through the cell face Sj averaged over temporal increment �t. The approximation
begins with specifying �uxes F⊥

j in terms of data available on the grid. The �nite-volume
�rst-order-accurate upwind scheme—alias donor-cell; hereafter ‘upwind’ for brevity—assumes

F⊥
j =[v⊥j ]

+�ni + [v
⊥
j ]

−�nj ; [v]+ :=0:5(v+ |v|); [v]− := 0:5(v− |v|) (3)

where normal velocity v⊥ ≡ v ·n is evaluated at the face Sj. The non-negative=non-positive
parts of v⊥j always coincide with out�ow=in�ow from the ith cell. Given suitably limited �t,
via a Courant–Friedrichs–Lewy condition, the upwind scheme exhibits the signature virtues
of sign preservation (for arbitrary �ows) and convexity§ (if ∇·v≡ 0). The sign preservation
su�ces for the non-linear stability. These apparent strengths of the scheme are o�set, however,
by the notorious numerical viscosity.
The key idea of MPDATA [1, 2] is to compensate for the truncation error of the upwind

scheme by reusing the same upwind algorithm but with a pseudo-velocity de�ned based on
the leading (dissipative) truncation error of the �rst step. By design, this leads to a scheme
that is second-order accurate, yet sign-preserving for arbitrary �ows.¶

In order to assess the leading truncation error of the �nite-volume upwind di�erencing, we
begin with expanding �i and �j that enter the de�nition of the upwind �ux in (3) about
a point ‘sj’ along the edge connecting vertices i and j, where the edge intersects the cell
face Sj

�i= �
∣∣∣∣
sj

+
@�
@r

∣∣∣∣
sj

(ri − rsj) + O(�r2); �j= �
∣∣∣∣
sj

+
@�
@r

∣∣∣∣
sj

(rj − rsj) + O(�r2) (4)

with r referring to the parametric description of the edge r(�)= ri + �(rj − ri); �∈ [0; 1].
Now, implementing (4) in the de�nition of the upwind �ux (3), employing the relations
v=[v]+ + [v]− and |v|=[v]+ − [v]− implied by the de�nitions in (3), and rearranging the
terms, results in

F⊥
j = v⊥j �

∣∣∣∣
n

sj

+ 0:5|v⊥j | @�
@r

∣∣∣∣
n

sj

(ri − rj) + 0:5v⊥j
@�
@r

∣∣∣∣
n

sj

(ri − 2rsj + rj) + O(�r2) (5)

§The �eld values are bounded by the surrounding values at the preceding time step.
¶Extensions to fully monotone schemes are available [4].
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that already reveals the explicit form of the O(�r) error in the approximation (2)–(3). In
order to reveal the O(�t) error, it now su�ces to expand �n about t n+1=2

�
∣∣∣∣
n

sj

= �
∣∣∣∣
n+1=2

sj

− 0:5 @�
@t

∣∣∣∣
n+1=2

sj

�t + O(�t2) (6)

only in the �rst term on the rhs of (5). Expanding spatial derivatives (about t n+1=2) in the
remaining terms is unnecessary, as it would lead to O(�t�r)∼O(�r2) errors.
For preserving the explicitly forward-in-time (as opposed to centred-in-time) character of

the approximation (2)–(3), it is important to express the temporal derivative in (6) in terms
of spatial di�erencing to O(�t; �r) at least. Although written in the integral form, (2)–(3)
approximate (1) to O(�r) essentially by design. Consequently: (i) viewing (1) as @�=@t=
− v∇�−�∇·v, (ii) replacing the temporal derivative in (6) with the rhs of the equation in
(i), and (iii) substituting the resulting relation in (5) for �|nsj in the �rst term on the rhs
results in

F⊥
j = v⊥j �|n+1=2sj + Error

Error =−0:5|v⊥j | @�
@r

∣∣∣∣
∗

sj

(rj − ri) +0:5v⊥j
@�
@r

∣∣∣∣
∗

sj

(ri − 2rsj + rj)

+0:5�t v⊥j (v∇�)|∗sj + 0:5�t v⊥j (�∇·v)|∗sj + O(�r2; �t2; �t �r) (7)

The asterisk in lieu of the temporal level in the Error symbolizes either n, n + 1
2 , or

n+1, as any of these temporal positions can be considered without a�ecting the form or the
order of Error. The result in (7) states that the upwind �ux in (3) can be decomposed into
a time-centred �ux through the face and the O(�r; �t) �ux of a predominantly Fickian character.
As with �nite di�erences, �nite-volume MPDATA consists of two upwind iterations

(2)–(3). In the �rst iteration, the input �eld and �ow velocity, � and v, are those from
the preceding time step t n. In the second (corrective) iteration, the input �eld � is the result
of the preceding upwind iteration and the pseudo velocity ṽ≡ −(1=�)Error. In particular,

ṽ⊥j =0:5|v⊥j |
(
1
�
@�
@r

)∣∣∣∣
∗

sj

(rj − ri)− 0:5v⊥j
(
1
�
@�
@r

)∣∣∣∣
∗

sj

(ri − 2rsj + rj)

−0:5�t v⊥j
(
v
1
�

∇�
)∣∣∣∣

∗

sj

− 0:5�t v⊥j (∇·v)|∗sj (8)

with the asterisk indicating now the �rst-order estimate of the n+1 solution from the preceding
upwind iteration. The entire process of estimating the residual error and compensating it can
be continued, iteration after iteration, reducing the magnitude of the truncation error, yet the
single corrective iteration su�ces for the second-order accuracy.
The outlined procedure conveys the essence of the �nite-volume MPDATA in abstraction

from particularities of spatial discretization. Notwithstanding, the general form of the pseudo
velocity (8) deserves a comment because it o�ers much guidance on how to design e�ective
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Figure 2. Isolines of cone advected through six rotations around the centre of the lower frame (only a
quarter of the domain is shown). The contour interval is 0.25, and the zero contour line is not shown.
Left plate, the analytic solution; centre plate, the FV MPDATA on a regular square-mesh; right plate,

as in the centre but for a triangular mesh.

implementations, and because it involves a few subtleties compared to the forms previously
published in the context of �nite di�erences.
The �rst term on the rhs of (8) is well known from �nite-di�erence theory, and straightfor-

ward to approximate on unstructured meshes. The second term—hereafter the ‘mesh-skewness’
term—is new. However, since it vanishes wherever the cell face is at the midpoint of the edge,
it can be set to zero with an adequate discretization. In particular, in our implementation we
use the median dual �nite volume discretization [12] that, by design, allows for a mean cur-
vature of the face and cancels out the mesh-skewness error; see Figure 1 for a schematic. The
third term, proportional to (v�−1∇�), is the most cumbersome. On an orthogonal mesh it be-
comes naturally decomposed into convective derivatives normal and tangential to cell faces.
In a general �nite-volume framework, however, the advantages of such a strategy become
either irrelevant or uncertain. Following Bacon et al. [9], here we shall evaluate the entire
convective derivative in terms of the Cartesian components.‖ Finally, the ∼ ∇·v is irrelevant
in this paper. In the solenoidal �ows assumed, it vanishes identically in the �rst corrective
iteration of MPDATA, whereas in subsequent iterations it enters as O(�t2) and is thus negli-
gible [2]. In arbitrary �ows, its accommodation follows straightforwardly the �nite-di�erence
developments [3, 4].

3. RESULTS

Herein, we illustrate the performance of the �nite-volume MPDATA using a standard solid-
body rotation test [1, 2, 4]. A cone of base radius 15 and height 4, centred initially at (75; 50),
is rotating counterclockwise around the centre of a [0; 100]× [0; 100] domain with the angular
velocity !=0:1. Figure 2 displays the isolines of the exact result and two FV MPDATA
solutions after 6 rotations. The solution in the central plate uses 104 squared cells, whereas

‖As with �nite-di�erence MPDATA, we always assure that denominators and numerators in approximations to all
∼�−1@� factors in (8) use the same elements, thereby resulting in the ratios of the

∑ ± �=
∑
� type,

whose absolute values never exceed unity for nonnegative �, cf. Reference [11].
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Table I. Error norms for solid-body rotation test using �nite-volume and
�nite-di�erence MPDATA; the classical upwind and centred-in-time-and-

space leapfrog schemes are included for reference.

Scheme Max Min L2

MPDATA FD 2.18 0 0:47× 10−3

MPDATA FV squares 2.18 0 0:47× 10−3

MPDATA FV triangles 2.00 0 0:54× 10−3

Upwind FD 0.27 0 1:21× 10−3

Upwind FV squares 0.28 0 1:04× 10−3

Upwind FV triangles 0.25 0 1:06× 10−3

Leapfrog FD 3.16 −0.62 0:62× 10−3

Leapfrog FV squares 3.11 −0.67 0:64× 10−3

Leapfrog FV triangles 3.11 −0.69 0:65× 10−3

the solution in the right plate uses a triangular grid with a similar number and distribution
of points. For reference, all parameters of the test and of the display are selected identical
to those in Figure 1 of Reference [4]. The accuracy of the results displayed is quanti�ed
in Table I, where the corresponding values for the classical upwind and centred-in-time-and-
space leapfrog schemes are included for the sake of reference. Noteworthy, we veri�ed (not
shown) that MPDATA and leapfrog achieve the same convergence rates for both formulations
and grids employed.
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